Keboola
official
devtools
Build robust data workflows, integrations, and analytics on a single intuitive platform.
Keboola MCP Server
A Model Context Protocol (MCP) server for interacting with Keboola Connection. This server provides tools for listing and accessing data from Keboola Storage API.
Requirements
- Python 3.10 or newer
- Keboola Storage API token
- Snowflake or BigQuery Read Only Workspace
Installation
Installing via Smithery
To install Keboola Explorer for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install keboola-mcp-server --client claude
Manual Installation
First, clone the repository and create a virtual environment:
git clone https://github.com/keboola/keboola-mcp-server.git cd keboola-mcp-server python3 -m venv .venv source .venv/bin/activate pip3 install -U pip
Install the package in development mode:
pip3 install -e .
For development dependencies:
pip3 install -e ".[dev]"
Claude Desktop Setup
To use this server with Claude Desktop, follow these steps:
-
Create or edit the Claude Desktop configuration file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
- macOS:
-
Add the following configuration (adjust paths according to your setup):
{ "mcpServers": { "keboola": { "command": "/path/to/keboola-mcp-server/.venv/bin/python", "args": [ "-m", "keboola_mcp_server", "--api-url", "https://connection.YOUR_REGION.keboola.com" ], "env": { "KBC_STORAGE_TOKEN": "your-keboola-storage-token", "KBC_WORKSPACE_SCHEMA": "your-workspace-schema" } } } }
Replace:
with your actual path to the cloned repository/path/to/keboola-mcp-server
with your Keboola region (e.g.,YOUR_REGION
, etc.). You can remove it if your region is justnorth-europe.azure
explicitlyconnection
with your Keboola Storage API tokenyour-keboola-storage-token
with your Snowflake schema or BigQuery dataset of your workspaceyour-workspace-schema
Note: If you are using a specific version of Python (e.g. 3.11 due to some package compatibility issues), you'll need to update theinto using that specific version, e.g.command
/path/to/keboola-mcp-server/.venv/bin/python3.11
Note: The Workspace can be created in your Keboola project. It is the same project where you got your Storage Token. The workspace will provide all the necessary connection parameters including the schema or dataset name.
- After updating the configuration:
- Completely quit Claude Desktop (don't just close the window)
- Restart Claude Desktop
- Look for the hammer icon in the bottom right corner, indicating the server is connected
Troubleshooting
If you encounter connection issues:
- Check the logs in Claude Desktop for any error messages
- Verify your Keboola Storage API token is correct
- Ensure all paths in the configuration are absolute paths
- Confirm the virtual environment is properly activated and all dependencies are installed
Cursor AI Setup
To use this server with Cursor AI, you have two options for configuring the transport method: Server-Sent Events (SSE) or Standard I/O (stdio).
-
Create or edit the Cursor AI configuration file:
- Location:
~/.cursor/mcp.json
- Location:
-
Add one of the following configurations (or all) based on your preferred transport method:
Option 1: Using Server-Sent Events (SSE)
{ "mcpServers": { "keboola": { "url": "http://localhost:8000/sse?storage_token=YOUR-KEBOOLA-STORAGE-TOKEN&workspace_schema=YOUR-WORKSPACE-SCHEMA" } } }
Option 2a: Using Standard I/O (stdio)
{ "mcpServers": { "keboola": { "command": "/path/to/keboola-mcp-server/.venv/bin/python", "args": [ "-m", "keboola_mcp_server", "--transport", "stdio", "--api-url", "https://connection.YOUR_REGION.keboola.com" ], "env": { "KBC_STORAGE_TOKEN": "your-keboola-storage-token", "KBC_WORKSPACE_SCHEMA": "your-workspace-schema" } } } }
Option 2b: Using WSL Standard I/O (wsl stdio)
When running the MCP server from Windows Subsystem for Linux with Cursor AI, use this.
{ "mcpServers": { "keboola": { "command": "wsl.exe", "args": [ "bash", "-c", "'source /wsl_path/to/keboola-mcp-server/.env", "&&", "/wsl_path/to/keboola-mcp-server/.venv/bin/python -m keboola_mcp_server.cli --transport stdio'" ] } } }
- where
file contains environment variables:/wsl_path/to/keboola-mcp-server/.env
export KBC_STORAGE_TOKEN="your-keboola-storage-token" export KBC_WORKSPACE_SCHEMA="your-workspace-schema"
Replace:
with your actual path to the cloned repository/path/to/keboola-mcp-server
with your Keboola region (e.g.,YOUR_REGION
, etc.). You can remove it if your region is justnorth-europe.azure
explicitlyconnection
with your Keboola Storage API tokenyour-keboola-storage-token
with your Snowflake schema or BigQuery dataset of your workspaceyour-workspace-schema
After updating the configuration:
- Restart Cursor AI
- If you use the
transport make sure to start your MCP server. You can do so by running this in the activated virtual environment where you built the server:sse
/path/to/keboola-mcp-server/.venv/bin/python -m keboola_mcp_server --transport sse --api-url https://connection.YOUR_REGION.keboola.com
- Cursor AI should be automatically detect your MCP server and enable it.
BigQuery support
If your Keboola project uses BigQuery backend you will need to set
GOOGLE_APPLICATION_CREDENTIALS
environment variable
in addition to KBC_STORAGE_TOKEN
and KBC_WORKSPACE_SCHEMA
.- Go to your Keboola BigQuery workspace and display its credentials (click
button).Connect
- Download the credentials file to your local disk. It is a plain JSON file.
- Set the full path of the downloaded JSON credentials file to
environment variable.GOOGLE_APPLICATION_CREDENTIALS
This will give your MCP server instance permissions to access your BigQuery workspace in Google Cloud.
Available Tools
The server provides the following tools for interacting with Keboola Connection:
- List buckets and tables
- Get bucket and table information
- Preview table data
- Export table data to CSV
- List components and configurations
Development
Run tests:
pytest
Format code:
black . isort .
Type checking:
mypy .
License
MIT License - see LICENSE file for details.
Related Servers
Adfin
official
The only platform you need to get paid - all payments in one place, invoicing and accounting reconciliations with [Adfin](https://www.adfin.com/).
View Details
APIMatic MCP
official
APIMatic MCP Server is used to validate OpenAPI specifications using [APIMatic](https://www.apimatic.io/). The server processes OpenAPI files and returns validation summaries by leveraging APIMatic’s API.
View Details