C

Chroma

community
search

Vector database server for semantic document search and metadata filtering, built on Chroma

Chroma MCP Server

A Model Context Protocol (MCP) server implementation that provides vector database capabilities through Chroma. This server enables semantic document search, metadata filtering, and document management with persistent storage.

Requirements

  • Python 3.8+
  • Chroma 0.4.0+
  • MCP SDK 0.1.0+

Components

Resources

The server provides document storage and retrieval through Chroma's vector database:
  • Stores documents with content and metadata
  • Persists data in
    src/chroma/data
    directory
  • Supports semantic similarity search

Tools

The server implements CRUD operations and search functionality:

Document Management

  • create_document
    : Create a new document
    • Required:
      document_id
      ,
      content
    • Optional:
      metadata
      (key-value pairs)
    • Returns: Success confirmation
    • Error: Already exists, Invalid input
  • read_document
    : Retrieve a document by ID
    • Required:
      document_id
    • Returns: Document content and metadata
    • Error: Not found
  • update_document
    : Update an existing document
    • Required:
      document_id
      ,
      content
    • Optional:
      metadata
    • Returns: Success confirmation
    • Error: Not found, Invalid input
  • delete_document
    : Remove a document
    • Required:
      document_id
    • Returns: Success confirmation
    • Error: Not found
  • list_documents
    : List all documents
    • Optional:
      limit
      ,
      offset
    • Returns: List of documents with content and metadata

Search Operations

  • search_similar
    : Find semantically similar documents
    • Required:
      query
    • Optional:
      num_results
      ,
      metadata_filter
      ,
      content_filter
    • Returns: Ranked list of similar documents with distance scores
    • Error: Invalid filter

Features

  • Semantic Search: Find documents based on meaning using Chroma's embeddings
  • Metadata Filtering: Filter search results by metadata fields
  • Content Filtering: Additional filtering based on document content
  • Persistent Storage: Data persists in local directory between server restarts
  • Error Handling: Comprehensive error handling with clear messages
  • Retry Logic: Automatic retries for transient failures

Installation

  1. Install dependencies:
uv venv
uv sync --dev --all-extras

Configuration

Claude Desktop

Add the server configuration to your Claude Desktop config:
Windows:
C:\Users\<username>\AppData\Roaming\Claude\claude_desktop_config.json
MacOS:
~/Library/Application Support/Claude/claude_desktop_config.json
{
  "mcpServers": {
    "chroma": {
      "command": "uv",
      "args": [
        "--directory",
        "C:/MCP/server/community/chroma",
        "run",
        "chroma"
      ]
    }
  }
}

Data Storage

The server stores data in:
  • Windows:
    src/chroma/data
  • MacOS/Linux:
    src/chroma/data

Usage

  1. Start the server:
uv run chroma
  1. Use MCP tools to interact with the server:
# Create a document
create_document({
    "document_id": "ml_paper1",
    "content": "Convolutional neural networks improve image recognition accuracy.",
    "metadata": {
        "year": 2020,
        "field": "computer vision",
        "complexity": "advanced"
    }
})

# Search similar documents
search_similar({
    "query": "machine learning models",
    "num_results": 2,
    "metadata_filter": {
        "year": 2020,
        "field": "computer vision"
    }
})

Error Handling

The server provides clear error messages for common scenarios:
  • Document already exists [id=X]
  • Document not found [id=X]
  • Invalid input: Missing document_id or content
  • Invalid filter
  • Operation failed: [details]

Development

Testing

  1. Run the MCP Inspector for interactive testing:
npx @modelcontextprotocol/inspector uv --directory C:/MCP/server/community/chroma run chroma
  1. Use the inspector's web interface to:
    • Test CRUD operations
    • Verify search functionality
    • Check error handling
    • Monitor server logs

Building

  1. Update dependencies:
uv compile pyproject.toml
  1. Build package:
uv build

Contributing

Contributions are welcome! Please read our Contributing Guidelines for details on:
  • Code style
  • Testing requirements
  • Pull request process

License

This project is licensed under the MIT License - see the LICENSE file for details.

Related Servers

B

Brave Search

reference

Web and local search using Brave's Search API

View Details
G

Git

reference

Tools to read, search, and manipulate Git repositories

View Details
G

Google Drive

reference

File access and search capabilities for Google Drive

View Details
Aiven logo

Aiven

official

Navigate your [Aiven projects](https://go.aiven.io/mcp-server) and interact with the PostgreSQL®, Apache Kafka®, ClickHouse® and OpenSearch® services

View Details
Apify logo

Apify

official

[Actors MCP Server](https://apify.com/apify/actors-mcp-server): Use 3,000+ pre-built cloud tools to extract data from websites, e-commerce, social media, search engines, maps, and more

View Details